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Abstract The mechanisms of fenretinide-induced cell death of neuroblastoma cells are complex, involving
signaling pathways mediated by free radicals or reactive oxygen species (ROS). The aim of this study was to identify
mechanisms generating ROS and apoptosis of neuroblastoma cells in response to fenretinide. Fenretinide-induced ROS or
apoptosis of SH-SY5Y or HTLA 230 neuroblastoma cells were not blocked by Nitro L-argenine methyl ester (L-NAME), an
inhibitor of nitric oxide synthase. Flavoprotein-dependent superoxide-producing enzymes such as NADPH oxidase were
also not involved in fenretinide-induced apoptosis or ROS generation. Similarly, ketoconazole, a cytochrome P450
inhibitor, and inhibitors of cyclooxygenase (COX) were also ineffective. In contrast, inhibition of phospholipase A2 or
lipoxygenases (LOX) blocked the induction of ROS and apoptosis in response to fenretinide. Using specific inhibitors
of LOX, blocking 12-LOX but not 5- or 15-LOX inhibited both fenretinide-induced ROS and apoptosis. The effects
of eicosatriynoic acid, a specific 12-LOX inhibitor, were reversed by the addition of the 12-LOX products, 12 (S)-
hydroperoxyeicosatetraenoic acid and 12 (S)-hydroxyeicosatetraenoic acid. The targeting of 12-LOX in neuroblastoma
cells may thus be a novel pathway for the development of drugs inducing apoptosis of neuroblastoma with improved
tumor specificity. J. Cell. Biochem. 89: 698–708, 2003. � 2003 Wiley-Liss, Inc.
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Retinoic acid induces neuroblastoma cells to
differentiate [Sidell et al., 1983]. In contrast,
fenretinide, a synthetic derivative of retinoic
acid in which the carboxyl end has been modi-
fied by the addition of an N-4-(hydroxyphenyl)

group, induces apoptosis of neuroblastoma cells
ratherthandifferentiation[Ponzonietal.,1995].
The inhibition of apoptosis by retinoic acid
receptor (RAR) antagonists and antioxidants
suggests that signaling pathways involving
RARs and reactive oxygen species (ROS) are
both required for the fenretinide-induced
apoptosis of neuroblastoma cells [Lovat et al.,
2000a], with the latter also involving a ROS-
dependent induction of the stress-response
transcription factor GADD153 [Lovat et al.,
2002]. Recent studies have also suggested
that a p53-independent pathway of fenreti-
nide-induced apoptosis of neuroblastoma may
operate through increased intracellular levels
of the lipid secondary-messenger ceramide
[Maurer et al., 1999, 2000]. Since fenret-
inide synergizes with chemotherapeutic drugs
to induce apoptosis in vitro [Lovat et al.,
2000b], defining the mechanism of free radical
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induction by fenretinide will be important in
the therapeutic application of fenretinide or the
search for other compounds that synergize with
conventional chemotherapeutic drugs.
Intracellular ROS in neuroblastoma cells re-

sulting from fenretinide treatment accumulate
rapidly within 2 h after treatment, peaking at
6 h [Lovat et al., 2000a]. Fenretinide itself may
have antioxidant properties [Takahashi, 2000],
so the increase in ROS must result from dis-
turbances in cellular metabolic pathways. A
number of candidate enzymes and biochemical
pathways are known to be important in genera-
ting ROS leading to apoptosis in various cell
types (Fig. 1). Nitric oxide (NO), produced by
nitric oxide synthase (NOS), is a powerful indu-
cer of apoptosis in some cell types, generating
peroxynitrite radicals and shifting cells to a
more oxidative state. Flavoprotein-dependent
superoxide-producing enzymes suchasNADPH
oxidase are implicated inROSgeneration in res-
ponse to drugs such as tamoxifen [Lee et al.,
2000] andgrowth factors suchas theROS induc-
ed by NGF in PC12 phaeochromocytoma cells
[Suzukawa et al., 2000]. Since NADPH oxidase
can also contribute to neuronal apoptosis [Tam-
mariello et al., 2000], this enzyme could be
important in fenretinide-inducedROS inneuro-
blastoma cells. Cytochrome P450 enzymes are

involved in many intracellular metabolic pro-
cesses, and the induction of cytochrome P450
activity can result in increased levels of ROS
[Cross and Jones, 1991]. For example, cyto-
chrome P450 mediates ROS generation in rat
hepatocytes, the resulting oxidative stress lead-
ing to apoptosis [Shiba and Shimamoto, 1999;
Ferrara et al., 2001]. The release and metabol-
ism of unsaturated fatty acids such as arach-
idonic acid (AA) could also play an important
role in ROS generation. AA released from
cell membranes can affect cell proliferation
and induce apoptosis directly [Surette et al.,
1999] or via activation of NADPH oxidase
[Brash, 2001]. Subsequent metabolism of AA
or other fatty acids by the lipoxygenase (LOX),
cyclooxygenase (COX), and cytochrome P450
enzymes of the prostaglandin, thromboxane,
leukotriene, and eicosatetraenoid synthesis
pathways may generate ROS resulting in
membrane lipid peroxidation, ER stress [Van
Leyen et al., 1998] and apoptosis [Maccarrone
et al., 1997]. The aim of this study was to
identify cellular pathways generating ROS in
neuroblastoma cells in response to fenretinide.
Using a range of enzyme inhibitors, we present
evidence that the primary source of ROS in
response to fenretinide in neuroblastoma cells
stems from 12-LOX activity.

Fig. 1. Intracellular enzyme systems generating reactive oxygen species (ROS). The relevant enzymes are
given in italics (boxed), and inhibitors of these enzymes are indicated alongside the arrows indicating the
products of each pathway.
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MATERIALS AND METHODS

Growth of Human Neuroblastoma Cell Lines
and Treatment With Fenretinide

and Free Radical Inhibitors

The human neuroblastoma cell lines, SH-
SY5Y (without amplification of N-myc [Biedler
et al., 1973]) and HTLA 230 (N-myc ampli-
fied [Matsushima and Bogenmann, 1992]) were
grown at 378C in Dulbecco’s modified Eagle’s
medium (Life Technologies Ltd., Paisley, UK),
supplemented with 10% foetal bovine serum
(FCS, Life Technologies Ltd.) (culture medium)
and in a humidified atmosphere of 5% CO2

in air. For all experiments, 2� 106 cells were
seeded into 25 cm2 tissue culture flasks (Costar,
Cambridge, UK) in 5 ml of culture medium
and allowed to attach overnight before treat-
ment. For experiments with 12 (S)-hydroxyei-
cosatetraenoic acid (12-HETE ) and 12 (S)-
hydroperoxyeicosatetraenoic acid (12-HPETE)
(both Sigma Chemical Co., Poole, UK), 2� 106

cells were seeded into 25 cm2 tissue culture
flasks, allowed to attach overnight and treated
with inhibitors for 2 h, before washout and
subsequent incubation in serum free medium
with inhibitors for a further 2 h prior to addition
of fenretinide�12-HETE or 12HPETE for 22 h.
Two hours after addition of fenretinide �12-
HETE or 12 HPETE, 10% FCS was added back
into cultures until the time of harvest.

Fenretinide (Janssen-Cilag Ltd., Basserdorf,
Switzerland) was added to cultures in ethanol
and an equal volume of ethanol (<0.1% of cul-
ture volume) was used to treat control cells.
Inhibitors of ROS-generating enzymes, obtain-
ed fromCalbiochem (La Jolla, CA) unless stated
otherwise, were added in DMSO (diaphenylene
iodonium (DPI), esculetin, and ketoconazole) or
ethanol to specifically inhibit the target path-
way at the following concentrations for 2 h
prior to 22 h treatment with fenretinide in
the presence of inhibitor: Nitro L-argenine
methyl ester (L-NAME, Sigma Chemical Co.),
400 mM; AACOCF3, 10 mM; diaphenylene
iodonium (DPI), 10 mM; indomethacin, 40 mM;
ibuprofen (Sigma Chemical Co.), 10 mM; nordi-
hydroguairetic acid (NDGA), 50 mM; esculetin
(Sigma Chemical Co.), 5 mM; 5,8,11,14-eicosate-
traynoic acid (ETYA), 30 mM; ketoconazole
(SigmaChemical Co.), 5 mMwith SH-SY5Y cells
and at 2 mMwithHTLA230 cells;MK886, 1 mM;
caffeic acid, 10 mM; PD146176 (Parke-Davis
Pharmaceutical Research,MI), 0.3 mMwithSH-

SY5Y cells and 0.1 mM with HTLA 230 cells;
baicalein, 1 mM; 5, 8, 11-eicosatriynoic acid
(ETI), 40 mM with SH-SY5Y cells and 50 mM
with HTLA 230 cells. An equivalent amount
of diluent was added to control cells. The
ROS-generating pathways inhibited by these
reagents are shown in Figure 1.

Evaluation of Free-Radical Generation
and Apoptosis

Free radical generation in SH-SY5Y cells was
detected by staining with dihydrodichloro-
fluorescein diacetate [Possel et al., 1997]
and evaluated by flow cytometry as previously
described [Lovat et al., 2000a,b]. We have
previously characterized fenretinide-induced
apoptosis in neuroblastoma cells using a num-
ber of techniques [Lovat et al., 2000a]; in the
present study, apoptosis inSH-SY5YandHTLA
230 cells was evaluated by flow cytometry of
propidium iodide-stained cells as previously
described [Lovat et al., 2000a,b].

Western Blotting

Westernblottingwasperformedaspreviously
described [Lovat et al., 2002]. All primary anti-
bodies were diluted 1:2,000 in blocking solution
(10% w/v non-fat milk powder, 5% w/v bovine
serum albumin, 0.1% v/v Tween 20 in PBS) and
incubated with the blots for 2 h at room
temperature. The rabbit polyclonal 5-LOX and
leukocyte12-LOX antibodies were from Alexis
Corporation (Nottingham, UK, Cat. No. 160402
and ALX-210-717, respectively); although the
12-LOXanibodywas raised tomurine leukocyte
12-LOX, this is reported to cross react with
human 12-LOX (manufacturers data sheet).
The sheep 15-LOX antibody and 15-LOX pro-
tein standard were gifts from Dr. Joe Cornicelli
(Parke-Davis Pharmaceutical Research). Ap-
propriate secondary antibodies were diluted
1:3,000 in blocking solution and incubated for
1 h at room temperature before detection by
chemiluminescence [Lovat et al., 2002].

RESULTS

Fenretinide-Induced ROS and Apoptosis
of SH-SY5Y Cells are Not Blocked by
Inhibitors of Nitric Oxide Synthase

To determine whether fenretinide-induced
ROS and apoptosis result from NOS activity,
cells were treated with 3 mM fenretinide in the
presenceorabsenceof L-NAME,aNOS inhibitor
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[Maccarrone et al., 1998]. This inhibitor did not
block ROS or apoptosis induced by fenretinide
in SH-SY5Y cells (Fig. 2), suggesting that NOS
does not participate in ROS generation or apop-
tosis induced by fenretinide in SH-SY5Y neuro-
blastoma cells.

The Role of NADPH Oxidase in
Fenretinide-Induced Apoptosis

NADPH oxidase and other flavoprotein-
dependent superoxide-producing enzymes are
inhibited by DPI [Cross, 1990]. To test for a role
of NADPH oxidase and other DPI-inhibi-

table enzymes in fenretinide-induced apoptosis
and ROS generation, SH-SY5Y cells were treat-
ed with DPI prior to incubation with fenreti-
nide. As with the inhibitors of NOS, DPI was
unable to block fenretinide-induced ROS or
apoptosis in SH-SY5Y cells (Figs. 3 and 4).
Similar results with respect to apoptosis were
obtained with HTLA 230 cells (Fig. 5). These
data imply that flavoprotein-dependent super-
oxide-producing enzymes such asNADPH oxid-
ase are not involved in fenretinide-induced
apoptosis or ROS generation in neuroblastoma
cells.

No Evidence for Cytochrome P450 Enzymes as
Meditators of Fenretinide-Induced ROS

Ketoconazole, a general inhibitor of cyto-
chrome P450 enzymes [Rizzo et al., 1999], was
used to investigate the role of cytochromeP450s
in fenretinde-induced ROS and apoptosis of
neuroblastoma cells. Ketoconazole was unable
to block fenretinide-induced ROS (Fig. 2) in
SH-SY5Y cells or fenretinide-induced apoptosis
of either SH-SY5Y (Fig. 3) or HTLA 230 cells
(Fig. 5). These results suggest that cytochrome
P450 is not involved in either fenretinide-
induced ROS or apoptosis of neuroblastoma
cells.

LOXs Mediate Fenretinide-Induced ROS and
Apoptosis of Neuroblastoma Cells

The potential involvement of AA in fenreti-
nide-induced ROS and apoptosis was investi-
gated using AACOCF3, a selective inhibitor of
PLA2 [Kuwata et al., 1998]. The treatment of
SH-SY5Y and HTLA 230 cells with AACOCF3
blocked fenretinide-induced ROS in SH-SY5Y
cells (Fig. 3) and also fenretinide-induced apop-
tosis of both SH-SY5Y (Fig. 4) and HTLA
230 cells (Fig. 5). These results imply that the
release of free AA is necessary for the apoptotic
effects of fenretinide on neuroblastoma cells.
Indomethacin [Chen et al., 1998] and ibuprofen
[Fadwa et al., 2000] were used as inhibitors
to investigate the role of COX in fenretinide
activity. Although indomethacin demonstrates
cross reactivity with PLA2 [Chen et al., 1998],
at the concentrations used here, inhibition is
relatively specific for COX. BothCOX inhibitors
hadno effect on fenretinide-inducedROS inSH-
SY5Y cells, or apoptosis in SH-SY5Y or HTLA
230 cells (Figs. 3–5).

Fenretinide-inducedROSare inhibited by the
antioxidant, vitamin E [Lovat et al., 2000a],

Fig. 2. Lack of inhibition of fenretinide-induced apoptosis or
ROS by inhibitors of nitric oxide synthase. DCFDA fluorescence
(A, arbitrary units) or % apoptosis (B) of SH-SY5Y cells treated
for 24 h in the presence of vehicle control (ethanol), 400 mM nitro
L-argenine methyl ester (L-NAME), 3mM fenretinide (FenR) or pre-
treated for 2 h with 400 mM L-NAME followed by the addition of
fenretinide to 3 mM and culture for a further 22 h (L-NAMEþ
FenR). Each bar is the mean� SD.
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implying that fenretinide-induced ROS may be
due to lipid hydroperoxides. To investigate the
role of LOX enzymes in mediating the effects of
fenretinide, we used a range of LOX inhibitors,
at appropriate concentrations to prevent cross
specificity, totreatSH-SY5YandHTLA230cells
2 h prior to addition of fenretinide. Two pan-
LOX inhibitors, esculetin, which blocks activity
by binding to LOX [Moore et al., 1991], and
ETYA, which blocks LOX activity by competing
with AA [Takami et al., 2000], did not induce
ROSor apoptosis on their ownbutwere effective
in blocking fenretinide-inducedROS and apopt-
osis ofSY-SY5Ycells (Figs. 3–4). Similar results
with respect to apoptosis were obtained with
HTLA 230 cells (Fig. 5). The pan-LOX inhibitor
NDGA also effectively blocked fenretinide-
induced free radicals in SH-SY5Y cells (DCFDA
fluorescence, arbitrary units�SD, n¼ 3: con-
trol, 5.17� 0.06; 50 mM NDGA, 13.02� 1.57;
10 mM fenretinide, 34.5� 2.84; 50 mM NDGAþ
10 mM fenretinide, 9.4� 0.63); however, it was
not possible to measure an effect of NDGA on
fenretinide-induced apoptosis as this agent
produced high levels of cell death alone (data
not shown). Apoptosis of SH-SY5Y and HTLA
230 cells, and the induction of ROS in SH-SY5Y
cells was also blocked by baicalein, a specific
inhibitor of 12-LOX [Huang et al., 1994], and by
ETI which inhibits 5- and 12-LOX at an IC50

of 20 mM [Takami et al., 2000] (Figs. 3–5).
Conversely,MK886an inhibitorof5-LOX[Ford-
Hutchinson et al., 1994], and PD146176, a
highly specific inhibitor of 15-LOX [Sendobry
et al., 1997], did not block the induction of ROS
and apoptosis in response to fenretinide in
SH-SY5Y cells, or fenretinide-induced apopto-
sis in HTLA 230 cells (Figs. 3–5). The same
result was obtained with caffeic acid, a 5-LOX

Fig. 3. Inhibition of fenretinide induced ROS in SH-SY5Y cells
by inhibitors of PLA2, NADPH oxidase, cytochrome P450,
cyclooxygenase (COX), or lipoxygenase (LOX). In each ofA,B,C,
D, DCFDA fluorescence (arbitraryunits) is indicated for SH-SY5Y
cells treated with ROS inhibitors or 3 mM fenretinide (FenR) alone
for 24 h or after pre-treatment with inhibitors for 2 h with
subsequent addition of fenretinide (to 3mM) for 22 h. A: results for
treatment with ethanol vehicle control (control), ibuprofen (Ibu,
10 mM), ETYA (30 mM), caffeic acid (caff, 10 mM) (B), DMSO
vehicle control (control), indomethacin (Indo, 40 mM), esculetin
(Escu, 5 mM), MK886 (1 mM), baicalein (Bai, 1 mM), (C) DMSO
vehicle control (control), diaphenylene iodonium (DPI, 10 mM),
AACOCF3 (10 mM). (D) ethanol vehicle control (control),
ketoconazole (keto, 5 mM), ETI (40 mM), PD146176 (0.3 mM).
Each bar is the mean� range of duplicate treatments.
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inhibitor [Sud’ina et al., 1993] which may also
have activity against 15-LOX [Shureiqi et al.,
2000a,b]. These results suggest that 12-LOX is
the mediator of ROS and apoptosis signaling
in response to fenretinide in SH-SY5Y and
HTLA 230 neuroblastoma cells. To ask whether
levels of LOX increased in response to fenreti-
nide, extracts from SH-SY5Y cells treated with
3 mM fenretinide were analyzed by Western
blotting. 15-LOX was neither expressed nor
induced in these cells (Fig. 6A). The 12- and 5-
LOX antibodies both cross-reacted with the 15-
LOX protein standard, and with proteins of
similar size in SH-SY5Y cells; although there
was an apparent increase in 5-LOX in response
to fenretinide, there was no evidence for an
increase in protein cross-reacting with the
12-LOX antibody in response to fenretinide
(Fig. 6A).

Inhibition of Fenretinide-Induced Apoptosis
by ETI is Reversed by the Addition

of 12-LOX Products

SH-SY5Y cells were treated for 2 h with ETI
before washout and incubation in serum-free
medium in the presence of this inhibitor for a
further 2 h prior to treatment with either 12-
HETE or 12-HPETE in the presence or absence
of fenretinide. The effects of ETI on fenretinide-
induced apoptosis or ROSwere irreversible and
the same results were obtained whether cells
were treated briefly (2 h) with the inhibitors or
cultured in their continued presence (data not
shown). Although 12-HETE or 12-HPETE did
not induce apoptosis on their ownwhenadded to
SH-SY5Y cells, the addition of these eicosate-
traenoids to cells pre-treated with ETI in the
presence of fenretinide restored the level of ap-
optosis to that obtained with cells treated with

Fig. 4. Inhibition of fenretinide-induced apoptosis of SH-SY5Y
cells by inhibitors of PLA2, NADPH oxidase, cytochrome P450,
COX, and LOX. In each ofA,B,C,D, % apoptosis is indicated for
SH-SY5Y cells treated with ROS inhibitors or 3 mM fenretinide
(FenR) alone for 24 h or after pretreatment with inhibitors for
2 h with subsequent addition of fenretinide (to 3 mM) for 22 h.
A: results for treatment with ethanol vehicle control (control),
ibuprofen (Ibu, 10 mM), ETYA (30 mM), caffeic acid (caff, 10 mM);
(B), DMSO vehicle control (control), indomethacin (Indo,
40 mM), esculetin (Escu, 5 mM), MK886 (1 mM), baicalein (Bai,
1 mM); (C) DMSO vehicle control (control), diaphenylene
iodonium (DPI, 10 mM), AACOCF3 (10 mM); (D) ethanol vehicle
control (control), ketoconazole (keto, 5 mM), ETI (40 mM),
PD146176 (0.3 mM). Each bar is the mean� range of duplicate
treatments.
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fenretinide in the absense of ETI (Fig. 6B).
These results provide further evidence for the
involvement of 12-LOX in fenretinide-induced
ROS and apoptosis of neuroblastoma.

DISCUSSION

This study suggests that of the enzyme sys-
tems frequently implicated in ROS generation,

only PLA2 and 12-LOX were apparently involv-
ed in ROS generation and apoptosis in response
to fenretinide in both SH-SY5Y and HTLA
230 neuroblastoma cells. PLA2 activity releases
AA frommembrane phospholipids; AA released
in thisway acts as a substrate for 12-LOXwhich
catalyses the stereospecific oxygenation ofAA to
form12-HPETEand12-HETE [Nie et al., 2000].
The production of 12-HPETE by 12-LOX may
lead to the production of ROS via glutathione
peroxidase. AA has been shown to be part of
the signal transduction pathway of IFN g-
induced differentiation and apoptosis of neuro-
blastoma [Ponzoni and Cornaglia-Ferraris,
1993], and is also clearly necessary for fenreti-
nide-induced apoptosis of these cells. Fenreti-
nide increases LOX activity in SH-SY5Y cells

Fig. 5. Inhibition of fenretinide-induced apoptosis of HTLA
230 cells by inhibitors of PLA2, NADPH oxidase, cytochrome
P450, COX, and LOX. In each of A and B, % apoptosis is indi-
cated for HTLA 230 cells treated with ROS inhibitors or 3 mM
fenretinide (FenR) alone for 24 h or after pretreatment with
inhibitors for 2 h with subsequent addition of fenretinide (to 3mM)
for 22 h. A: results for treatment with ethanol vehicle control
(control), AACOCF3 (AACOC, 10 mM), diaphenylene iodonium
(DPI, 10mM), indomethacin (Indo, 40mM),ETYA (30mM),escule-
tin (Escu, 5 mM), baicalein (Bai, 1 mM), MK886 (1 mM), caffeic
acid (caff, 10 mM); (B), DMSO vehicle control (control),
ketoconazole (keto, 2 mM), ETI (50 mM), PD146176 (0.1 mM).
Each bar is the mean� range of duplicate treatments.

Fig. 6. A: Western blot probed with antibodies to 15-, 12-, and
5-LOX. Lanes: s, standard 15-LOX protein; c, 30 mg of lysate from
SH-SY5Y cells treated with vehicle control (ethanol); F, 30 mg of
lysate from SH-SY5Y cells treated with 3 mM fenretinide for 22 h.
The arrows mark the position of the 15-LOX protein standard,
which was detected by all antibodies. Molecular weights in
kilodaltons are indicated on the left of the figure. B: reversibility
of ETI inhibition of fenretinide-induced apoptosis of SH-SY5Y
cells by 12-HETE and 12 (S) HPETE. % apoptosis after treatment
with ETI (40 mM) alone for 24 h or treatment with fenretinide (Fen
R, 3 mM) alone for 22 h, 12 (S) HETE or 12-HPETE (0.5 or 1 mM)
alone for 22 h, or with 12 (S) HETE or 12-HPETE (0.5 or
1 mM)þ Fen R (3 mM) together for 22 h. The % apoptosis is also
shown for pre-treatment with ETI (B) for 4 h prior to addition of
12 (S) HETE or 12-HPETE (0.5 or 1 mM)� Fen R (3 mM) for 22 h or
with just the addition of Fen R (3 mM) for 22 h. Each bar is the
mean� range of duplicate treatments.
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without increasing free AA levels [Lovat et al.,
2002]. Since levels of protein cross-reacting
with the 12-LOX antibody did not increase
in response to fenretinide, it is possible that
fenretinidemediates apoptosis in SH-SY5Y and
HTLA 230 neuroblastoma cells by increasing
12-LOX activity.
Individually, different LOX enzymes have

been implicated in modulating apoptosis in sev-
eral cellular systems, and the inhibition of LOX
activity is often associated with the promotion
of apoptosis. For example, inhibition of 5- and
12-LOX triggers apoptosis in human prostate
cancer [Ghosh and Myers, 1998; Pidgeon et al.,
2002], and inhibition of 12-LOX induces apop-
tosis of gastric cancer cells [Wong et al., 2001].
In contrast, increased15-LOX expression med-
iates drug-induced apoptosis in colorectal can-
cer [Shureiqi et al., 2000a,b]. Clearly, the role of
LOX enzymes in carcinogenesis and tumor bio-
logy may vary according to cell type and it has
been suggested that LOXpathwaysmay exist in
a dynamic balance of procarcinogenic (5- and
12-LOX) and anticarcinogenic (15-LOX) forms
[Shureiqi and Lippman, 2001]. The apoptosis
induced by specific LOX inhibitors in some cell
types could also result from shifts in AA meta-
bolism to other LOX enzymes, generating pro-
apoptoticAAmetabolites such as products of the
15-LOX pathway [Avis et al., 2001].
Nevertheless, in CHP100 neuroepithelioma

cells, hydroperoxides generated from 5-, 12-,
and 15-LOX all induce apoptosis and cellular
LOX activity clearly has a pro-apoptotic effect
[Maccarrone et al., 2000, 2001]. There is
increasing evidence to suggest that 12-LOX
is a key enzyme of AA metabolism in brain
and neuronal cells [Palluy et al., 1994], and is
involved in aspects of synaptic transmission as
well as nerve cell death [Li et al., 1997; Christie
et al., 2000]. Since activation of 12-LOX also
leads to apoptosis in fibroblasts [Gu et al., 2001],
the response to changes in 12-LOX activity
varies according to cell type. Although the
effects of 12-LOX inhibition in neuroblastoma
cells could be reversed by addition of 12-LOX
products to the cells, restoring the apoptotic
effects of fenretinide, 12-HETE, and 12-HPETE
did not induce apoptosis on their own. Evidence
fromother studies suggests thatRARactivation
via a conventional retinoid activity of fenreti-
nide is also required in order for fenretinide to
induce apoptosis [Lovat et al., 2000a]. The
nature of this RAR-dependent activity is un-

known. However, LOX products can be potent
ligands for peroxisome proliferator-activated
receptors (PPARs) [Murakami et al., 1999;
Shappell et al., 2001], and, since these work as
heterodimers with RXRs, as do RARs, it is
possible to speculate that interactions between
RXR-dependent signaling pathways is a poten-
tial mechanism underlying the requirement
[Lovat et al., 2000a] for fenretinide to have
RAR-dependent and ROS-dependent activities
in order to induce apoptosis of neuroblastoma
cells.

With respect to the ROS-dependent pathway
of fenretinide action in neuroblastoma cells,
other studies have shown that ceramide levels
increase in response to treatment with high
(10mM)doses of fenretinide [Maurer et al., 1999,
2000]. Since both AA and ROS can induce cera-
mide production [Andrieu-Abadie et al., 2001;
Chen et al., 2001], the PLA2/12-LOX pathway
may be an upstream event in fenretinide-
induced apoptosis of neuroblastoma cells with
ceramide activation as a consequence of increa-
sed ROS or AA levels. Alternatively, ceramide
accumulated in response to fenretinide may
contribute to apoptosis by conversion to gang-
lioside GD3 [De Maria et al., 1997; Rippo et al.,
2000], which may stimulate 12-LOX activity
[Bezuglov et al., 1991], recruit ROS by other
mechanisms [Bhunia et al., 2002], and/or direct-
ly participate in cytochrome c release from
mitochondria. Further studies are clearly re-
quired to elucidate relationships between cera-
mide, AA signaling pathways, and fenretinide-
induced apoptosis.

Downstream signaling events of fenretinide-
induced apoptosis involve mitochondria, and in
neuroblastoma cell lines, the effector pathway
of fenretinide-induced apoptosis is caspase-
dependent, involving the mitochondrial release
of cytochrome c independently of changes in the
mitochondrial permeability transition [Lovat
et al., 2000a]. Since cytochrome c may catalyze
the ability of 12-LOX tometabolize linoleic acid,
increasing hydroperoxide production [Iwase
et al., 2000], cytochrome c release may be an
important factor increasing cellular stress in
addition to its function in activating caspases.
In this context, a LOX-mediated alteration
of membrane fluidity and permeability has
been shown to be a basis for the dissipation of
the membrane potential and increased cyto-
chrome c release from isolated mitochondria
[Maccarrone et al., 2001].
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LOX pathways play an important role in
growth-related signal transduction and may be
important targets for the development of new
drugs toarrest cancerprogression [Cuendet and
Pezzuto, 2000; Shureiqi and Lippman, 2001].
The results of this study suggest that 12-LOX in
neuroblastoma cells may act as a new target for
neuroblastoma therapy, in which drugs that
activate 12-LOX or increase AA levels may be
used in combination with retinoids to induce
apoptosis. Such an approach may have greater
tumor specificity than the chemotherapeutic
agents currently in clinical use and hence the
design of new compounds targeting components
of the AA cascade may be of substantial benefit
for the treatment of neuroblastoma in the
future.
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